

Job title	PhD - EstImation de l'Etat de saNté et de la durée de vie résiduelle de
	systèmes Piles à Combustible.
Job type	PhD
Contract duration	36months
Qualifications	Master's degree
Job hours	Full-time
Employer	UBFC – Université de Franche-Comté
Host Laboratory	FEMTO-ST
	FCLAB
URL Host	www.fclab.fr
Laboratory	
Address Host	Rue Thierry MIEG
Laboratory	90010 Belfort FRANCE
Job description	Context
	The fuel cell systems still suffer from low reliability and durability, besides the high
	cost. The objective of the RESYLIENT project is to develop algorithms to
	characterize online, realtime the operation (performance), the state of Health SoH
	(diagnostics) and the Remaining Useful Lifetime, RUL (Prognostics) of a PEMFC.
	The developed algorithms are mainly signal based using the major approach of
	signal processing approaches for SoH determination of the stack, online under
	dynamic load profiles. Besides, in automotive systems sensors are exposed to
	rough environmental conditions like extreme temperatures, wet and dry humidity,
	ice formation, vibrations, and shocks. This leads to frequent failures in sensor
	signals.
	Objectives of the PhD thesis
	The goal of this thesis is to develop simple models to increase the durability of FC
	systems (diagnosis, prognosis, fault tolerance) taking into account the real
	integration constraints of the system, in the design of the algorithms themselves;
	that is to say, to take into account the constraints related to embedded systems
	where one needs to operate a reliable diagnosis/prognosis without stopping the
	system, and without using intrusive, bulky, or expensive sensors or devices.
	It would be interesting to apply different approaches for the analysis of non-
	stationary signals from PEMFC fuel cell systems to develop reliable fault tolerant
	diagnostics, prognosis and control. We are particularly interested in the analysis of
	response to multi-frequency signals. It will therefore be necessary to establish a
	solid theoretical basis for the signal processing tools to be used, and then apply
	them to databases from experimental tests. In parallel, accelerated test protocols
	must be set up and will allow to validate the developed algorithms.
	Tasks of the PhD thesis process
	must be set up and will allow to validate the developed algorithms.

	The different tasks of this thesis are the following:
	<u>Task 1, M1-M6:</u>
	- Literature review, diagnosis, prognosis, tools for non-stationary signal analysis.
	- Literature review, degradation and defects of PAC and AST systems.
	<u>Task 2, M6-M24</u> :
	- Multi-frequency signal response analysis with different approaches.
	- Comparison on the basis of several criteria to be defined in the previous task.
	- Develop spectral and time-scale analyses in order to make a reliable diagnosis
	and prognosis of the stack and the surrounding system.
	- Develop accelerated test protocols, validation metrics.
	Task 3, M12-M30 Experimental campaign and validation.
	Task 4, M24-M33 First experimental feedbacks, algorithmic optimization.
	Task5, M28-M36 Thesis writing.
Supervisor(s)	Nadia YOUSFI STEINER (nadia.steiner@univ-fcomte.fr)
	Elodie PAHON (<u>elodie.pahon@utbm.fr</u>)
	Daniel HISSEL (daniel.hissel@univ-fcomte.fr)
	The PhD applicant should:
Candidate profile	Hold a master's degree or equivalent and have competencies in one or several of
	the following topics: electrical engineering, electrochemistry, automatic control,
	computer sciences, Applied mathematics, data mining, artificial intelligence.
	Have good written and oral communication skills in English.
	International applications are strongly encouraged.
Keywords	Fuel cell system, diagnostic, control, prognostic, modelling
Application deadline	15/05/2021
deadine	
Starting Job	01/09/2021
	PhD Position
Application Depending on the type of position	Please send the following documents (all in one PDF file) by e-mail to nadia.steiner@univ-fcomte.fr, elodie.pahon@utbm.fr and daniel.hissel@univ-fcomte.fr:
	1) For EU candidates: Copy of your national ID card or of your passport page
	where your photo is printed. For non-EU candidates: Copy of your passport page where your photo is
	printed.
	2) Curriculum Vitae (1 page).
	3) Letter of motivation relatively to the position (1 page).
	4) Copy of your Master degree and/or Engineer degree if already available. 5) Copy of your final marks and ranks.
	6) Coordinates of reference persons (maximum 3, at least your master thesis supervisor): Title, Name, organization, e-mail.
	If you have questions regarding the application, please contact the supervisors.